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1. INTRODUCTION

Many marine species demonstrate ontogenetic 
shifts in habitat use, driven by changes in physiology, 
predation pressure, and diet (Pittman & McAlpine 
2003, Snover 2008, Munsch et al. 2016). As they age 

and grow, demersal fish, for example, change depth 
and sediment preference (Macpherson & Duarte 
1991, Laurel et al. 2007), reef fish migrate from man-
grove or seagrass habitat to coral reefs (Shibuno et al. 
2008), and crabs shift their distribution due to forage 
availability, predation, and host preference (Richards 
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1992, Baeza & Stotz 2010, Pirtle & Stoner 2010). 
Ontogeny also affects the distributional response 
of many fish species to changes in climate (Barbeaux 
& Hollowed 2018). Various clades of marine mam-
mals also exhibit ontogeny-specific habitat choice 
(Page et al. 2006, Fowler et al. 2007, Mendes et al. 
2007, Campagna et al. 2021). Uncovering the connec-
tion between life stage and distribution is fundamen-
tal to our understanding of behavior, population de -
mography, and critical habitat (Hazen et al. 2012). 

Conservation threats to sharks, namely fishing and 
habitat loss, are dependent in part on patterns of 
space use (Cortés et al. 2010, Lucifora et al. 2011, 
Dulvy et al. 2021). Therefore, properly managing and 
conserving shark populations requires a better under-
standing of the changing threat landscape from the 
start to the end of sharks’ lives (Cortés et al. 2011, 
Afonso & Hazin 2015, Carlisle et al. 2015, Stoffers et 
al. 2021). With 31% of all species threatened with 
extinction, sharks are among the most threatened 
groups of vertebrates on Earth (Dulvy et al. 2021) and 
exemplify a larger trend of global marine defaunation 
(McCauley et al. 2015). Large-bodied sharks, which 
can be ecologically important due to their high 
trophic position (Myers et al. 2007, Heithaus et al. 
2008, Estes et al. 2016), are especially suffering from 
anthropogenic population declines (Ferretti et al. 
2010, Dulvy et al. 2014). A preference for nearshore 
habitat during the juvenile stage can bring some spe-
cies of large sharks into increased contact with fish-
eries and recreation (Heupel et al. 2015, Ajemian et al. 
2020, Anderson et al. 2021b). 

The white shark Carcharodon carcharias is a prime 
example of a large-bodied shark that exhibits ontoge-
netic shifts in its distribution and which faces conser-
vation threats (Rigby et al. 2022). Specifically, juve-
nile white sharks use coastal habitats more frequently 
than adults (Kerr et al. 2006, Carlisle et al. 2012, Sko-
mal et al. 2017). These coastal areas are considered to 
be white shark ‘nurseries’ if they meet all of these crit-
eria: exhibit a high density of young-of-year (YOY) 
individuals relative to other areas, relatively high site 
fidelity of those YOY individuals, and persistence of 
use across years (Heupel et al. 2007). Areas meeting 
some or all of these criteria for white sharks have been 
identified in the Southern California Bight (SCB) 
(Weng et al. 2007, White et al. 2019, Anderson et al. 
2021b), Baja California, Mexico (Santana-Morales et 
al. 2012), southeastern Australia (Bruce et al. 2019), 
the New York Bight (Curtis et al. 2018), and eastern 
South Africa (Dicken & Booth 2013). 

A variety of biotic and abiotic factors have been 
used to explain the abundance and distribution of 

juvenile and adult white sharks, with temperature 
often believed to be among the most important 
(White et al. 2019, Spurgeon et al. 2022). White sharks 
exhibit regional endothermy (Carey et al. 1982, 
McCosker 1987, Goldman 1997), allowing them to 
tolerate a wide temperature range, cross vast swaths 
of open ocean, and traverse coastlines along large lat-
itudinal and longitudinal gradients (Bonfil et al. 2005, 
2010, Bruce & Bradford 2012, Curtis et al. 2014). Nev-
ertheless, smaller, younger white sharks appear to 
prefer a narrower range of temperatures than larger 
conspecifics (Boustany et al. 2002, Weng et al. 2007, 
Curtis et al. 2014), potentially because of a limited 
ability to thermoregulate (White et al. 2019). This 
temperature-mediated habitat selection could be the 
result of behavioral thermoregulation by juvenile 
white sharks, or it may be driven by the thermal 
optima of their prey (Weng et al. 2007, Bruce et al. 
2019, Anderson et al. 2022). 

Prey availability is considered to be a defining char-
acteristic of both nursery areas and other essential 
habitat for sharks (Heithaus 2007, Heupel et al. 2007). 
Prey availability is related to ontogenetic habitat 
shifts, because juvenile and adult white sharks, like 
many other species of shark (Wetherbee & Cortés 
2004), have dissimilar diets (French et al. 2018). As 
evidenced by their less-serrated, narrower teeth 
(Hubbell 1996), juvenile white sharks tend to have a 
diet composed predominantly of teleosts and rays 
and then expand their diet as adults to include marine 
mammals; this transition generally occurs at around 
300 cm total length (TL) (Tricas & McCosker 1984, 
Estrada et al. 2006, Hussey et al. 2012, Kim et al. 
2012). 

Aggregation sites provide a useful context for stu-
dying if and how environmental factors shape the 
local abundance of different white shark life stages, as 
multiple life stages have been observed using these 
sites. Uncovering the mechanisms that drive the for-
mation of, and abundance at, these critical habitats is 
a key directive for white shark research (Huveneers et 
al. 2018). In addition to creating nursery areas, age-
specific habitat requirements cause white sharks to 
form aggregations with high densities of immature 
individuals within nursery areas (Anderson et al. 
2021b, Rex et al. 2023, E. Spurgeon et al. unpubl. 
data). Most research of white shark aggregations, 
however, has focused on larger individuals at forag-
ing grounds outside of nursery areas (Robbins 2007, 
Domeier & Nasby-Lucas 2007, Domeier et al. 2012, 
Duffy et al. 2012, Jorgensen et al. 2012, Schilds et al. 
2019, Kanive et al. 2021), so environmental and tem-
poral drivers of density at aggregation sites within 
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nursery areas are poorly understood. Previous work 
on juvenile white sharks has largely relied on various 
telemetry methods to examine patterns of shark 
behavior over larger spatial scales (e.g. White et al. 
2019, Spurgeon et al. 2022, Rex et al. 2023). In the pre-
sent study, insight is more focused on very fine-scale 
spatial and temporal variation. We also consider such 
patterns over a range of white shark size classes 
within this finer-scale spatial domain. 

Despite demonstrated relations between the afore-
mentioned factors (e.g. diet, temperature, ontogeny) 
and broad-scale white shark distribution, the impact 
of these factors on fine-scale habitat choice within the 
nursery area, and across life history stages, is yet to be 
fully understood. For example, month, time of day, 
water temperature, tidal height, swell height, and 
lunar phase collectively explained only 1.8% of the 
deviance in a model of white shark acoustic detec-
tions in eastern Australia (Spaet et al. 2020). Tempera-
ture, while well-supported as a driver of basin-scale 
movement (Spurgeon et. al 2022), may not be useful 
for predicting occupancy at individual locations; tem-
perature was associated with juvenile density at 
aggregation sites within the SCB nursery in only 4 
of 9 years of one study, and other variables such as 
chlorophyll a (chl a) and season were also incon -
sistent in their effects (Anderson et al. 2021a). There-
fore, additional research using novel technology at 
fine spatial scales is needed to better understand 
why white sharks form aggregations within nursery 
areas and what factors determine abundance at ag -
gre gation sites (Anderson et al. 2021b, Jorgensen et 
al. 2022, Rex et al. 2023). 

Unoccupied aerial vehicles (UAVs) can provide val -
uable insights complementary to traditional methods 
(e.g. telemetry) for studying the factors that shape 
white shark abundance in these high-density aggre-
gation habitats. Advantages conferred by UAVs in -
clude the ability to provide a snapshot view of the sur-
face waters of an entire aggregation site (e.g. Ayres et 
al. 2021b); they are non-invasive (Christiansen et al. 
2016, Butcher et al. 2021); and their low cost-per-use 
provides the opportunity to repeatedly survey aggre-
gation sites at high temporal frequency. However, 
there are also many disadvantages of UAVs for these 
applications. They do not permit observation of 
sharks at depths below the detection limit for UAVs or 
outside of daytime hours; they cannot track individ-
uals or populations for prolonged periods and over 
significant distances; detectability can be impacted 
by environmental factors; and they often cannot aid 
with identification of specific individuals. In study 
sites, such as the focal site for this research, where 

many of the sharks have already been found to spend 
the majority of their time in surface waters (within 2 m 
of the surface regardless of depth), concern about 
some of these shortcomings can be lessened. Taken in 
sum, how ever, UAVs are well-suited for creating new 
insight into the factors that shape abundance patterns 
in white shark aggregation sites. 

As UAVs become more common in the study of 
shark biology and as a tool for public safety and coas-
tal management (Butcher et al. 2021), more informa-
tion is needed about the efficacy of UAV surveys 
compared to other methods, as well as the oceano-
graphic factors that may introduce bias or otherwise 
affect UAV-derived shark counts (Elphick 2008, Wil-
liams et al. 2017, Butcher et al. 2021, Rex et al. 2023). 
For example, sea state and water visibility can affect 
the ability to distinguish objects in the water but do 
not always have an effect on UAV surveys (Koski et al. 
2009, Hodgson et al. 2013, 2017, Hensel et al. 2018, 
Butcher et al. 2019, Colefax et al. 2020a). 

In this study, we analyzed a 2 yr (2020–2021) data 
set of UAV surveys of white sharks at an inshore ag -
gregation site in the SCB (hereafter referred to as the 
Carpinteria aggregation site). We used generalized 
additive models to determine the effects of temporal 
(day of year, time of day) and oceanographic (water 
temperature, chl a, tide, swell height, visibility, sea 
state) factors on shark density estimates. We con-
ducted equivalent modeling procedures on juvenile 
(<3 m TL) and sub-adult or adult sharks (≥3 m TL, 
sensu Bruce & Bradford 2012) independently, to 
explore whether the relationship between temporal 
and oceanographic factors and observed shark den-
sity was mediated by ontogeny. 

2.  MATERIALS AND METHODS 

2.1.  Survey methods 

White shark UAV surveys were conducted off the 
coast of Carpinteria, California, at the northwest ex -
tent of the SCB off Santa Claus Beach (34°24’ 33’’ N, 
119°33’ 10’’ W) a known aggregation area for white 
sharks (Fig. 1) (Anderson et al. 2021a, Rex et al. 2023). 
The benthic habitat in the study area (from surf zone to 
a maximum of 600 m from shoreline) is fairly homoge-
neous, consisting largely of shallow, sandy-bottom 
habitat of <10 m depth, with little observable rocky 
reef  substrate or kelp forest habitat. Surveys took 
place over the immediate inshore area, covering 
around 2 km of coastline and extending up to 600 m 
from shore (~1.2 km2; Fig. S1 in the Supplement at 
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www.int-res.com/articles/suppl/m744p101_supp.pdf). 
De spite the shallow nature of this particular study lo-
cation, surface heating and localized wind and current 
patterns do lead to considerable microscale variation 
in temperature and temperature stratification (Spur-
geon et al. 2024). 

UAV surveys at the Carpinteria aggregation site 
were conducted between 24 June and 11 December 
2020 and 20 April and 18 December 2021. Surveys 
were conducted all weekdays during these 2020 and 
2021 survey periods during daylight hours when the 
weather was safe and suitable for UAV flights. Sur-
veys were performed with a Mavic 2 Pro quadcopter 
(SZ DJI Technology) with a 4K resolution camera that 
films at 30 frames s–1; focal length of 35 mm, format 
equivalent: 28 mm; and aperture of f/2.8–f/11. Save 
for a polarizing filter over the camera lens, the UAV 
was otherwise unmodified. The Mavic Pro 2 uses 
a barometric sensor to determine relative altitude 
(height above a consistently located takeoff location). 
Empirical field tests were conducted with the DJI 
Mavic 2 Pro resulting in a field of view (FOV) mea-
surement of 73°. Specifically, FOV was measured in 
overwater tests at the study beach with the drone at a 
range of different altitudes imaging 2 objects (i.e. a 
PVC rod and surfboard; Text S1) of known size and 
via overland flights at the same altitude flown over a 
transect tape laid on flat ground. During data collec-

tion flights, the camera was always positioned at the 
nadir (i.e. at an angle of 90° to the sea surface). 

We utilized 2 UAV survey methods, performed 
back-to-back each day that surveys were conducted. 
One was an automated ‘belt transect’ survey, similar 
to Rex et al. (2023), with inshore and offshore flight 
paths, and one was a survey flight, manually operated 
by the UAV pilot conducted in a ‘roaming’ manner 
(Fig. 1, Fig. S1). The order of these belt transect and 
roaming surveys was alternated randomly between 
survey days. 

For the belt transect survey, the UAV flew automat-
ically along 2 belt-shaped transects that were pre-
 programmed using Litchi autonomous flight software 
(VC Technology): one 1560 m long transect posi-
tioned just seaward of the surf zone (‘inshore tran-
sect’) and one of the same length, ~200 m farther off-
shore (‘offshore transect’) (Fig. 1). While there are 
modest differences in depths of water between in -
shore and offshore transects, both transect types are 
generally deeper than 3 m, the approximate maxi-
mum depth at which sharks can usually be detected 
through UAVs. There are also some differences in vis-
ibility across transects due to higher turbulence in 
inshore waters near breaking waves. We binned 
data from both transects in our analyses; however, in 
Text S2 we discuss differences in sitings between 
these 2 transects. 

104

Fig. 1. (A) All unoccupied aerial vehicle (UAV) surveys were conducted in a known aggregation site in the Southern California 
Bight off Santa Claus Beach. Daily shark densities used in this study were calculated as the total number of all presumed 
unique individuals from 2 survey types conducted back-to-back and standardized by total survey area. The first survey type 
was a (B) roaming survey, where the flight path shown for the roaming survey is representative of a typical survey and varied 
depending on the presence and location of sharks. The 9 red portions of the example roaming survey flight path shown in 
red indicate where the UAV pilot observed a shark and lowered the altitude of the UAV. The second type of survey was a 
(C) belt transect survey that included both an ‘inshore’ and an ‘offshore’ transect. Maps produced in Google Earth, satellite  
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For the roaming surveys, the UAV was launched 
from the same starting point as the belt transects. A 
search boundary for the roaming surveys was pre-
centered over the study site, enclosing an area within 
which roaming flights were contained (and these 
boundaries were then delineated on the UAV video 
monitor overlay). The pilot manually piloted the 
drone in a sinusoidal search pattern back and forth 
within these boundaries, attempting to cover as much 
area as possible while moving generally parallel to 
the coastline and transiting freely across the areas 
defined as inshore and offshore in the belt transect 
method (Fig. 1). The duration of these roaming survey 
flights was dictated by the battery life of the UAV. 
Most flights lasted approximately 20 min, with a 
resultant mean (±SD) search area of roaming surveys 
of 0.304 ± 0.134 km2 (n = 238). For both transect 
methods, the UAV was flown at an altitude of 40 m 
above sea level and a speed of 5.6 m s–1. However, 
during roaming surveys only, when a shark was 
detected, the pilot descended to ~20 m to observe 
markings, acoustic and/or satellite tags from other 
research projects, and to obtain a clearer image of the 
shark for photogrammetric estimation of body length. 

The specific areas of both the belt transect and the 
roaming surveys were calculated based on the total 
length of the flight, altitude (i.e. in the case of roam-
ing surveys when the drone dropped to size sharks), 
and the width of the FOV of the camera, which fluctu-
ates with altitude (Kiszka et al. 2016). Given that 
roaming flight paths were non-linear, we generated 
‘FOV rectangles’ for every GPS point (taken every 
0.1 s) along the flight path during the active search 
portion of each survey flight (i.e. when the UAV was 
at the 40 m search altitude). The rectangles were 
 converted to spatial polygons with GPS coordinates 
attached, allowing each rectangle generated during 
the survey to be stitched into a single total survey 
geospatial polygon. The total area of this polygon was 
then calculated, corresponding to the total area 
 surveyed. Interestingly, despite the different charac-
teristics of the belt and roaming surveys, supplemen-
tal analyses indicated that when standardized by 
area, they yield quite similar shark density estimates 
(Text S3, Fig. S2). 

A single integrative measure was manually 
derived from a review of data collected in the back-
to-back belt transect and manual flights to avoid 
overcounting sharks. To obtain this single measure, 
we compared the video record from each of the 2 
surveys immediately after the flight to determine 
the total number of unique observable sharks pre-
sent in the study site during the survey day. Infor-

mation such as body length, distinguishing features 
such as scarring or the presence of tracking tags, 
and the spatial position in the survey area were all 
used to reduce, as much as possible, incidences of 
double counting (both within and between surveys) 
in this integrative measure. For example, a large 
shark marked with a tracking tag to the left of its 
dorsal fin traveling in the western area of the 
survey region that was observed in both the belt 
transect and roaming surveys would be counted 
only once. This count of total number of unique 
sharks observed on a daily basis was then standard-
ized by dividing the total number of unique sharks 
observed in a day by each survey’s total area cov-
ered in both survey types, and is hereafter referred 
to as ‘daily unique shark density’ and was the re -
sponse measure inputted into our analytical models. 
Notably, unique shark density was very closely cor-
related with belt survey density (Fig. S3). All shark 
data were included in the modeling; i.e. inclusive of 
days where count data were estimated to be zero. 

2.2.  Environmental variables 

Environmental variables used in our models in -
cluded sea surface temperature (SST) averaged 
across 2 sensor locations at the Carpinteria aggrega-
tion site in 2020 and 7 locations in 2021, along with 
seafloor temperature (SFT) averaged across 7 loca-
tions (Spurgeon et al. 2022); satellite-derived chl a 
levels, averaged across the 3 most proximal 0.0125° 
grid cells (https://coastwatch.noaa.gov); tidal height 
from the nearest NOAA tide station ~12 km to the 
west (https://tidesandcurrents.noaa.gov Station 9411
340); and swell height from the nearest offshore 
NOAA swell buoy ~31 km to the southwest (https://
ndbc.noaa.gov Station 46053). We used hourly aver-
ages for these variables to match the temporal scale of 
the surveys. We also assessed Beaufort sea state and 
assigned a daily visibility score (1–5) based on the 
video collected by the UAV. Given that few survey 
days occurred at the extremes of each scale, we 
binned sea state into 2 levels (0–1 and 2+) and visibil-
ity into 3 levels: 1–2 (‘low’), 3 (‘medium’), and 4–5 
(‘high’). 

2.3.  Sizing of sharks 

As described previously, overland and overwater 
calibration flights were used to estimate the FOV of 
the UAV. Timestamps in the GPS log were used to 
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determine the altitude of the UAV at the moment 
when the length of each shark was measured. We also 
conducted in-water field tests with target objects of 
known length to quantify and correct for measure-
ment error (see Text S1). Analysis of length estima-
tions from these field tests revealed that for a UAV 
altitude of 20 m, the same altitude that was used for 
most length estimations of sharks, a combination of 
accounting for takeoff elevation and shark depth pro-
duced accurate length estimations, while also allow-
ing for the collection of details on individual sharks 
that were helpful for avoiding the double counting of 
individuals (Fig. S4). Further details are shared in 
Text S4 but overall, correcting for these 2 factors at 
20 m altitude resulted in a mean error in these con-
trolled trials of 1.7%. The mean error for uncorrected 
length estimates, meanwhile, was 12.8%. 

We used this method, taking into account elevation 
and depth, for all shark length estimations reported 
herein. Takeoff elevation above sea level was taken 
from the UAV flight log. Shark depth was visually cat-
egorized by analysts from video data into 3 depth 
bins: ‘surface’ (< 0.75 m), ‘shallow’ (be tween 0.75 and 
1.5 m), and ‘deep’ (between 1.5 and 3 m). Depth cate-
gories were estimated based on easily observable ref-
erence indicators of depth (e.g. dorsal or caudal fin 
creating ripples on the surface of the water for the sur-
face category). The midpoints of the shallow and deep 
categories (1.125 and 2.25 m, respectively) were used 
as the depth correction factors for those categories. 
We did not make and do not report measurements of 
sharks estimated to be deeper than 3 m due to a gen-
eral inability to accurately identify the tail and snout 
positions beyond this depth. 

Using these inputs and following a similar process 
as Colefax et al. (2020b), we calculated shark length 
by (1) determining the width of ocean surface, in 
meters, captured in the frame of interest (i.e. when the 
shark was centered in the frame with a linear body 
position) based on a trigonometric calculation using 
the FOV, UAV altitude, and takeoff elevation above 
sea level; (2) dividing this frame width in meters by 
the frame pixel width (2704 pixels for video taken at 
2.7K resolution) to obtain the size in meters of each 
pixel; (3) measuring the total length of the shark in 
pixels using a digital image processing application; 
(4) converting shark length in pixels to total length in 
meters using the size of each pixel calculated in step 
2; (5) estimating a correction factor for shark depth 
calculated by adding estimated shark depth to total 
UAV altitude and dividing this sum by the original 
measured UAV altitude; and (6) multiplying the total 
shark length estimate by this aforementioned correc-

tion factor. This final step treats shark depth as an 
increase in the distance between the UAV and the 
shark. 

2.4. Modeling shark density 

We constructed generalized additive models 
(GAMs) to determine the association between tempo-
ral and oceanographic variables (Table S1) and the 
density of observed white sharks. GAMs were imple-
mented in the R software environment (R Core Team 
2022) using RStudio (RStudio Team 2022) and the 
‘mgcv’ package (Wood 2017). We fit GAMs to the 
daily unique shark density (hereafter ‘overall model’), 
the subset of sharks included in the daily unique shark 
density metric that were <3 m TL (hereafter ‘small 
shark’ model), and the subset of unique sharks in-
cluded in the daily unique shark density metric that 
were 3 m TL or longer (hereafter ‘large shark’ model). 
Data were drawn only from days where both types of 
UAV surveys were conducted to generate daily unique 
shark densities and included all data for which the es-
timated abundance was zero. The overall model was 
included to determine if a larger sample size would 
significantly change the patterns of density compared 
to the small shark and large shark models and to un-
derstand overall patterns of behavior across size 
classes. While we present here data from the 3 models 
that use SFT data as our focal model, in Text S5 and 
Table S2, we also present data from parallel GAMs 
using SST data. In Tables S3 & S4 we also rerun GAM 
models, separating them between the 2 types of UAV 
surveys. In all models, year was included as a paramet-
ric term. The day of the year was also stratified by year 
to account for between-year variability. 

We used restricted maximum likelihood (REML) 
smoothing parameter estimation, with a negative bi -
nomial family distribution due to overdispersion. 
Rather than performing backward term selection, 
which has the potential to exclude important terms, 
we used the double penalty approach to automati-
cally remove non-contributing smooth functions from 
the model (Marra & Wood 2011). For each smooth 
function, k was set at 10 to avoid overfitting (Ander-
son et al. 2021b). 

Smooth functions were used for oceanographic 
variables. We accounted for intra-annual variation 
using a continuous ‘day of year’ smoothing spline, 
rather than a categorical ‘season’ (e.g. Anderson et 
al. 2021b) or ‘month’ (e.g. Spaet et al. 2020) term, to 
test for temporal non-linearity in shark density. 
Day of year was included as a smoothed term strati-
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fied by  year, to account for variance in the intra-
annual temporal pattern of environmental factors. 
The other temporal factors in the GAMs were the time 
of day (binned hourly) at which the surveys were con-
ducted and year (categorial). The model structure 
was thus: 

Shark density ~ year + s(hour) + s(day of year, 
by = year) + wave height + visibility + s(tidal height) 

+ s(temperature*) + s(sea state) + s(chl a) 

where s() denotes that a smoothing function was used 
and * denotes that either SST or SFT was used (varies 
across the 2 models). 

For each GAM, we determined the deviance 
explained (DE) of each term by dropping it from the 
full model and calculating the difference in DE 
between the full model and the model without the 
term in question (Spaet et al. 2020). This procedure 
also enabled us to test the model for sensitivity to the 
terms included. Model diagnostics were performed 
with the ‘gam.check’ function. 

We recognize that the use of DE remains a develop-
ing strategy (Gislason et al. 2020, Spaet et al. 2020, 
Chen et al. 2024) and that for some in the ecological 
community, making inferences based on DE can be 
viewed as a speculative and a non-preferred method 
for interpretation. Thus, in addition to the GAM mod-
eling approach described above, we also analyzed the 
data using a more traditional Akaike Information 
Criterion (AIC)-based approach. In Table S5, we pro-
vide results from this secondary analysis. The results 
of this complimentary AIC approach align very closely 
with the DE results reported below. 

3.  RESULTS 

A total of 232 survey days (104 in 2020; 128 in 2021) 
were conducted that included both belt and roaming 
surveys and generated a daily unique shark density 
data point for inclusion in the modeling. We were un-
able to obtain length estimates for observations where 
the depth of the shark was indeterminate, its snout 
and/or tail position were obscured, or the altitude of 
the UAV was unavailable from the flight metadata. 
These unsized individuals were mostly observed in 
 autonomous surveys which did not allow for a descent 
from altitude to view and more accurately measure de-
tected sharks. After removing these unsized individ-
uals, the small and large shark models in cluded survey 
data with 481 and 304 shark observations, respectively; 
the size distribution of sharks followed a unimodal dis-
tribution, with a median size of ~2.44 m (Fig. S5). 

While we ran separate models for environmental 
prediction of shark abundance for small sharks, large 
sharks, and overall sharks (i.e. daily unique shark 
density), the factors associated with observed shark 
density were broadly consistent across each of these 
models (Table 1). Our central model that included 
SFT performed best for overall sharks (44.1% of DE) 
and large sharks (29.6% of DE) compared to small 
sharks, for which only 21% of deviance is explained. 
For better visualization of these data, in Fig. S6 we 
have also plotted the models directly, creating plots 
of the model terms against their smoothed function 
response. 

The effects of each term in the model were largely 
consistent between the models using SFT and those 
for which SST was used (Table S2). However, the SST 
models explained a slightly lower proportion of the 
deviance (36.3, 20.7, and 29% of DE for overall shark, 
juvenile, and large shark models, respectively, for 
SST vs. 44.1, 21.2, and 29.6% of DE for SFT). SFT itself 
also explained more deviance within the SFT model 
than did SST in the SST model. Therefore, from here 
forward we focus on results for the SFT models unless 
mentioned otherwise (see Table S2 and Fig. S7 for full 
SST results). 

Similarly, results from integrated models (using 
both transect and roaming survey methods) were 
qualitatively similar to the models that separately 
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                              Deviance explained (%) 
                                                Overall            Small            Large 
                                                 sharks            sharks          sharks 
 
Year                                            1.5                 6.3                1.9 
Day of year                              20.9                13.5                4.8a 
Time of day                              8.7                 2.6                8.5 
Seafloor temperature            8.2                 2.1                0.7 
Chl a                                            –                    1.3                0.1 
Tidal height                             0.1                   1                  4.7 
Swell height                             0.4                 3.7                0.1 
Sea state                                    2.9                   0                  0.3 
Visibility                                   2.3                 0.6                6.7 
Total DE                                   44.1                21.2                  29.6 
aDay of year was significantly associated with large 
shark density in 2021 only

Table 1. Total deviance explained (DE) and DE of each tem-
poral and oceanographic term in generalized additive models 
(GAMs) of observed density of overall sharks and density of 
observed small (<3 m total length [TL]) and large (>3 m TL) 
white sharks using seafloor temperature (SFT) data. DE in 
bold indicates that a term was significantly  associated with 
density (p < 0.05 in the respective GAM output). DE is not 
 reported when total DE was higher in the  reduced models 
than in the global model. See Table S5 for complementary  

analyses reporting Akaike’s information criterion values
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treated only one of the 2 survey methods. Thus, we 
hereafter discuss only results from integrated models 
but include discussion and data from the separate 
models in Tables S3 & S4. 

Day of year was the variable most highly associated 
with density in all overall and small shark models (see 
Fig. 2, Fig. S8). Although the effects of day of year var-
ied between the 2 years, within each year, the intra-
annual trend in density (represented by day of year) 
was similar across the overall, small shark, and large 
shark models. However, day of year explained over 
twice as much deviance in the overall and small shark 
models (20.9%, p < 0.001 and 13.5%, p < 0.01, respec-
tively) as in the large shark model (4.8%), where day 
of year was only significantly associated with density 
in 2021 (p < 0.01). While year itself was a significant 
factor in adult shark models, it was not significant in 
juvenile or overall shark models and explained <2% 
of deviance in the adult shark model. 

Time of day was also moderately important in over-
all shark models, explaining 8.7% of the deviance in 
overall shark density (p < 0.001), but this was driven 
almost entirely by large shark density. The associa-
tion between time of day and density was not signifi-
cant for small sharks, which our data modeled least 
well. For large sharks, density increased throughout 
the day, peaking from 16:00 to 18:00 h (the latest hour 
at which surveys were conducted) (Fig. S9). 

SFT (Fig. 3) was associated with overall density 
(8.2% of DE, p < 0.01) and small shark density (2.1% of 

DE, p = 0.04), but not large shark density (0.7% of DE, 
p = 0.2). Small shark density exhibited a negative 
relationship with SFT, with the model predicting 
maximum small shark density observed at the lowest 
temperatures (<12°C) and minimum density at the 
highest temperatures (>22°C). Overall density was 
driven by small shark numbers and was thus higher at 
lower SFTs, particularly below 16°C. 

Sea state and visibility had only modest explana-
tory power. Visibility had a weak significant relation-
ship with density only in the overall shark SFT model, 
explaining just 2.3% (p = 0.047). Sea state similarly 
only explained 2.9% of the variance (p = 0.037) in the 
overall shark model. 

Tidal height explained just 0.1% of deviance in the 
overall model (p = 0.012), and 4.7% of deviance in the 
large shark model (p = 0.015); it was not significant in 
small shark models. Higher tides corresponded to 
lower observed density in the overall and large shark 
model. 

Chl a and swell height were not associated with 
density in any of the 3 models. 

4.  DISCUSSION 

Our study conferred the opportunity to observe and 
attempt to explain the factors potentially shaping 
white shark relative abundance at this aggregation 
site from a unique vantage point. Surveys conducted 
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Fig. 2. Variation in observed white shark density by year, 
pooled for all shark size classes (i.e. overall model), as deter-
mined by the smooth function for ‘day of year’ in the gener-
alized additive model. Results shown are on the response 
scale, with all other parameters held constant. Shaded re- 

gions: 95% confidence interval for each year

Fig. 3. Relationship between seafloor temperature and mod-
eled daily unique shark density in the overall (all observed 
sharks), small shark (<3 m total length [TL]), and large shark 
(>3 m TL) generalized additive models. Shaded regions: 95%  

confidence interval for each model
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by UAV can offer an opportunity to observe a wider 
range of size classes, and potentially a higher number 
of unique individuals, compared to other methods. 
For example, UAV surveys may be well positioned to 
observe transient sub-adult and adult sharks in ad-
dition to high-residency YOY and juvenile white 
sharks (White et al. 2019, Spaet et al. 2020, Anderson 
et al. 2021a,b). UAV surveys are, however, disadvan-
taged by imperfect detection probability (Koski et al. 
2009, Hodgson et al. 2017, Butcher et al. 2019, Ayres et 
al. 2021b, Rex et al 2023), an inability to detect sharks 
outside of surface waters, and the difficulty in deter-
mining whether each sighting is of a unique individ-
ual. These limitations may cause biases to wards over-
estimating or underestimating density compared to 
other meth ods (Hodgson et al. 2016, Williams et al. 
2017). There may also be some biases towards sighting 
large individuals and missing smaller individuals. We 
discuss these and other limitations further below. 

We included a visibility score in our models to 
attempt to disentangle detection availability from 
actual patterns of shark density, a key limitation to 
UAV surveys, and found that low visibility was largely 
not strongly associated with shark density, especially 
in our ‘large shark’ and ‘small shark’ models, al -
though there was a very small effect on overall sharks 
(Table 1). While visibility is a subjective measure-
ment, this is similar to results from other UAV studies 
of large predatory sharks (Colefax et al. 2020a) and 
mock-shark targets (Hensel et al. 2018), where little to 
no effect of visibility on detections was found. We 
found a similarly very minor association between sea 
state and shark density (Table 1). The lack of strong 
association in this particular study may in part derive 
from the fact that many of the sharks at this site are 
found in waters very near to the surface, reducing 
some of the potentially confounding effects of visibil-
ity on detectability; i.e. juvenile white sharks at this 
site spend approximately 71% of their time in waters 
<2 m from the sea surface, regardless of site depth. 

Time of year was the most consistent predictor of 
YOY white shark density across a multitude of aggre-
gation sites in Southern California (Anderson et al. 
2021b, Rex et al. 2023). Day of year also played a pri-
mary role in explaining shark density at the Carpin-
teria aggregation using these UAV methods in our 
data (Table 1). White shark density in our overall 
model (all shark classes pooled) peaked around Sep-
tember and October in 2020 and around July and 
August in 2021, a pattern broadly consistent with 
other observations across Southern California show-
ing decreased observations during the boreal winter 
and summertime peaks. Interestingly, day of year ex -

hibited a more than 2 times stronger association with 
the density of small sharks compared to large sharks, 
suggesting more sensitivity by these smaller sharks to 
day of year at this site. Year, as a factor in our model, 
showed only a very weak effect on shark density, and 
then only significantly so for large sharks (Table 1). 
Additional longer-term monitoring may be required 
to better understand the role and importance of 
across-year variation in shark density and to better 
consider how climate oscillations, such as those that 
typify these years (e.g. this study period occurred 
during an extended multi-year La Niña period), may 
affect white shark density (Fig. S10 shows within-year 
variation in SFT and SST by month for the duration of 
this study). 

We also observed a relatively strong diel pattern in 
overall density, where surveys conducted later in the 
day were largely associated with higher density esti-
mates. Such patterns were much more evident for the 
‘overall shark’ model and for the ‘large shark’ model. 
This general diel pattern of UAV-observed density is 
consistent with acoustic tracking studies of depth use 
by white sharks at the Carpinteria aggregation, where 
sharks utilized deeper waters around dawn and dusk, 
with a transition to shallow near-surface waters in the 
late afternoon (Spurgeon et al. 2024). However, these 
results largely pertained to smaller white sharks. Our 
observations would indicate that UAV surveys con-
ducted in the late afternoon might result in a more 
accurate assay of the true shark abundance at this 
site. It should be noted, however, that juvenile white 
shark distribution in coastal waters off eastern Aus-
tralia showed little response to time of day (Spaet et 
al. 2020), suggesting the potential for regional varia-
tion in these patterns. Diel patterns of the kind 
detected for the white sharks in this study here have 
been observed in UAV surveys of blacktip Carcharh -
inus limbatus, lemon Negaprion brevirostris, bull Car-
charhinus leucas, and Pacific nurse shark Ginglymo -
stoma unami aggregations in coastal habitats (Ayres 
et al. 2021a,b). 

Of the environmental factors that we investigated, 
the effects of temperature had amongst the strongest 
effects on shark density. In particular, in our primary 
model, which included SFT, the density of observed 
small sharks and overall sharks had a negative rela-
tionship to SFT (Table 1, Fig. 3). The best explanation 
for this pattern likely stems from avoidance of these 
colder SFTs and preferential use of these typically 
warmer SSTs by these smaller white sharks, which 
have been shown to be less tolerant of colder tem-
peratures (Weng et al. 2007, Curtis et al. 2018, Spur-
geon et al. 2024). The lack of such a strong relation-
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ship observed between SFT and larger sharks would 
seem likely to arise from the higher surface area to 
body size ratios of these larger sharks. Alternate 
models that explored the role of SST on shark density 
found much weaker relationships with SST (Table S2). 
Generally, higher shark densities were associated 
with higher SSTs (Fig. S7). As with SFT, larger sharks 
showed much less association with SST than their 
smaller-sized counterparts. It should be recalled that 
UAV field sampling in this study did not include some 
of the traditionally coldest-water months of the year 
(e.g. January, February, March); thus, these models 
only examine associations across a portion of the 
year. Taken collectively, results from the SFT and SST 
models appear to indicate that (1) smaller white 
sharks exhibit greater temperature sensitivity than 
larger white sharks and (2) the general trend in over-
all shark density patterns was such that sharks at this 
site were avoiding colder SFTs and showing a weak 
positive association with warmer SSTs until those 
temperatures became too warm. Our findings are thus 
broadly consistent with other works describing the 
preferred thermal niche for white sharks in this 
region, as well as in Australia and the Atlantic (Curtis 
et al. 2014, White et al. 2019, Lee et al. 2021). Whether 
these relationships mechanistically arise from effects 
of temperature on shark physiology or behavior — or 
whether they reflect sharks tracking the effects of 
these same temperatures on their prey, or both —
remains to be directly tested. 

The environmental variables tested in our primary 
SFT model, namely chl a, tidal height, swell height, 
and sea state, showed generally less strong or variable 
associations with white shark density (Table 1). There 
was one modest significant association between tidal 
height and density of large sharks — with a higher 
density of large sharks observed at lower tides. It is 
difficult to assign a definitive causal link between this 
potential relationship with lower tides. It is plausible 
that periods of lower tides are associated with less 
wave energy in the inshore area of this particular 
study beach, as it has a flat low tide terrace and 
steeper upper beach face, and that such lower energy 
conditions are preferred by these sharks. Some of the 
environmental variables that we tested in this study 
have been found to influence the behavior of sharks in 
other studies (Fallows et al. 2016, Skubel et al. 2018). It 
must also be considered that the abiotic variables we 
examined do affect white sharks, but that the spatial 
resolution of these data (especially for chl a, which 
was derived from satellite data) precluded us from de-
tecting these relationships. If there were to have been 
an observed influence of chl a in these models, this 

would most likely have affected sharks indirectly by 
affecting prey abundance. While nu merous candidate 
prey items were observed in these UAV surveys (e.g. 
stingrays, bat rays, baitfish schools), future research 
will be required to properly incorporate contempora-
neous, local data on prey abundance with observed 
shark density. 

Based on the data we collected in the field and the 
explanatory variables that we modeled, it seems clear 
that there is not a simplistic answer that determines 
precisely why sharks were using the Carpinteria ag-
gregation site and thus what was driving these ob-
served fluctuations in their density. Despite conduct-
ing hundreds of UAV surveys, we observed none of the 
hunting behaviors described in Colefax et al. (2020b), 
who studied white sharks with a UAV along coastal 
beaches in eastern Australia. However, we do note that 
observations of white shark predation events are rare, 
even at pinniped colonies (Brown et al. 2010). Other 
observations of prey species, along with telemetry 
data on swim speeds and long periods of residency of 
white sharks at the Carpinteria aggregation site (An-
derson et al. 2021b, 2022), suggest that sharks are in-
deed foraging in the area. Other potential drivers that 
shape density at the aggregation site and deserve fu-
ture consideration include intraspecific interactions 
(Schilds et al. 2019, Anderson et al. 2021a), such as 
competitive exclusion of smaller sharks from other 
areas used by larger sharks (Goldman & Anderson 
1999, Martin et al. 2009), and as a refuge from preda-
tion (Pyle et al. 1999, Benson et al. 2018, Jorgensen et 
al. 2019, Towner et al. 2022). Future research using 
UAVs could perform targeted behavioral observations, 
rather than density surveys as performed in this study, 
to better understand such drivers and the variable in-
fluence of these factors on different shark size classes. 
Part of the challenge of explaining shark density using 
these modeling ap proaches derives almost certainly 
from the fact that white sharks exhibit complex inter-
annual patterns with inshore–offshore dynamics that 
vary ontogenically (Kerr et al. 2006, Carlisle et al. 
2012, Jorgensen et al. 2012, Skomal et al. 2017). A 
more extended time series of UAV observations might 
better document these types of patterns and lead to 
more holistic explanations of variation in local shark 
density. Also, we note that these data were collected 
from a fairly homogenous area of sandy beach habitat. 
Additional research that surveys white shark patterns 
in Southern California across a more diverse range of 
representative coastal habitats (e.g. rocky reef, kelp 
forest, areas with increased bathymetric complexity) 
will shed more light on how microhabitat shapes some 
of the patterns reported herein (Heithaus et al. 2006). 
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5.  CONCLUSIONS 

We demonstrated that a number of factors, espe-
cially time of year, time of day, and water temp -
erature, are associated with white shark density, as 
estimated via UAV survey. Ontogeny appears to in -
fluence how white sharks respond to these factors, as 
the observed density of larger sharks was less tempo-
rally variable, and smaller individuals exhibited more 
of a response to colder SFTs and slightly more of a 
response to intermediately warm SSTs. Researchers 
and safety officials alike should take diel variability in 
shark density into account when planning the time of 
day during which surveys are to be conducted so as to 
most accurately monitor changes in shark abun-
dance. Our observed intra-annual variability in shark 
density estimates also suggests that long-term data 
may be needed to accurately capture patterns of 
shark abundance and properly describe the factors 
shaping their abundance. 

UAV surveys have many disadvantages and limita-
tions relative to other shark research methodologies, 
including the short-duration, snapshot nature of den-
sity estimates, the inability to simultaneously collect 
ancillary oceanographic data at the same fine spatial 
scale at which sharks choose habitat, and the inability 
to collect data at night or during inclement weather; 
which, in some contexts, are conditions that are 
known to shape shark behavior (Hammerschlag et al. 
2006). UAV approaches can also only detect sharks in 
surface waters, so we are unable to detect sharks 
below observable depths. These limitations, however, 
do not prevent UAV surveys from establishing useful 
benchmarks of shark density and behavior at local 
scales — especially when blindspots from UAV re -
search are filled by complimentary insight from other 
research methods. 

The capability of conducting relatively lower cost, 
higher temporal frequency surveys of white sharks (as 
well as other megafaunal species) may become even 
more advantageous as climate change and other 
human uses alter these coastal marine ecosystems. 
Early evidence already suggests, for example, that 
increasing water temperatures in the SCB (Ras-
mussen et al. 2020) may be causing new aggregation 
sites to form (Tanaka et al. 2021) and potentially alter-
ing spatiotemporal patterns of shark abundance and 
residency at these sites. Tracking such changes in 
near-time via UAV monitoring and, to the degree pos-
sible, anticipating such shifts using these data, can 
potentially help manage any potential conflicts 
between white sharks specifically (and other sharks 
more broadly) and beach users, fisheries, and other 

human uses of coastal environments. Such informa-
tion will also improve our ability to track the efficacy 
of management efforts for such species and generate 
useful new information about their basic ecology. 
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